

Use of GPS-tracking Data to Locate Bird Nests and Estimate Reproductive Outcome

Simona Picardi

Brian J. Smith, Matthew E. Boone, Peter C. Frederick, Jacopo G. Cecere, Diego Rubolini, Lorenzo Serra,Simone Pirrello, Rena R. Borkhataria, Mathieu Basille

UNIVERSITÀ DEGLI STUDI DI MILANO

Central Place Foraging

Central Place Foraging

- Consecutive days
- Percent days visited
- Percent attendance on top day

Central Place Foraging

- Consecutive days
- Percent days visited
- Percent attendance on top day

Assumption: revisitation patterns differ between nests and non-nests

Workflow

package 'nestR'

https://github.com/picardis/nestR

Visualize data to find trusted nests

nestR													
Input parameters	Show 10 V	entries											
	burst	loc_id	long	lat	first_date	last_date	attempt_start	attempt_end	tot_vis	days_vis	consec_days	perc_days_vis	perc_top_vis
Species-specific parameters	1134370-2013	2170	-80.85100	25.46283	2013-02-24	2013-05-02	2013-02-24	2013-05-02	589	61	37	89.71	100.00
Start of nesting season	1134370-2013	3270	-79.39017	33.14267	2013-05-12	2013-06-03	2013-05-12	2013-06-03	219	22	20	95.65	100.00
11-01	1134370-2013	1023	-80.57167	25.48183	2012-11-27	2012-12-20	2012-12-07	2012-12-20	97	15	14	62.50	87.50
End of nesting season	1134370-2013	2364	-80.84683	25.46033	2013-02-02	2013-04-18	2013-03-08	2013-04-18	87	37	17	48.68	35.71
08-31	1134370-2013	1391	-80.54367	25.24817	2012-12-23	2013-01-17	2012-12-23	2013-01-17	60	17	4	65.38	83.33
	1134370-2013	1317	-80.54383	25.24900	2012-12-23	2013-01-19	2012-12-23	2013-01-19	54	16	8	57.14	80.00
Duration of complete nesting cycle (days)	1134370-2013	857	-80.56700	25.51517	2012-11-28	2013-01-25	2012-11-28	2013-01-25	49	8	3	13.56	71.43
110	1134370-2013	1048	-80.57017	25.48033	2012-11-26	2013-01-25	2012-12-10	2013-01-25	48	11	6	18.03	53.33
Data-related parameters	1134370-2013	1873	-80.85133	25.46200	2013-02-05	2013-02-24	2013-02-17	2013-02-24	42	7	5	35.00	87.50
	1134370-2013	644	-80.41600	25.37267	2012-11-12	2012-11-20	2012-11-12	2012-11-20	33	9	9	100.00	66.67
Buffer (m)	burst	loc_id	long	lat	first_date	last_date	attempt_start	attempt_end	tot_vis	days_vis	consec_days	perc_days_vis	perc_top_vis
40													

Showing 1 to 10 of 38 entries

Visualize data to find trusted nests

nestR													
Input parameters	Show 10 V	entries											
	burst 🔅	loc_id	long	lat	first_date	last_date	attempt_start	attempt_end	tot_vis	days_vis	consec_days	perc_days_vis	perc_top_vis
Species-specific parameters	1134370-2013	2170	-80.85100	25.46283	2013-02-24	2013-05-02	2013-02-24	2013-05-02	589	61	37	89.71	100.00
Start of nesting season	1134370-2013	3270	-79.39017	33.14267	2013-05-12	2013-06-03	2013-05-12	2013-06-03	219	22	20	95.65	100.00
11-01	1134370-2013	1023	-80.57167	25.48183	2012-11-27	2012-12-20	2012-12-07	2012-12-20	97	15	14	62.50	87.50
End of nesting season	1134370-2013	2364	-80.84683	25.46033	2013-02-02	2013-04-18	2013-03-08	2013-04-18	87	37	17	48.68	35.71
08-31	1134370-2013	1391	-80.54367	25.24817	2012-12-23	2013-01-17	2012-12-23	2013-01-17	60	17	4	65.38	83.33
	1134370-2013	1317	-80.54383	25.24900	2012-12-23	2013-01-19	2012-12-23	2013-01-19	54	16	8	57.14	80.00
Duration of complete nesting cycle (days)	1134370-2013	857	-80.56700	25.51517	2012-11-28	2013-01-25	2012-11-28	2013-01-25	49	8	3	13.56	71.43
110	1134370-2013	1048	-80.57017	25.48033	2012-11-26	2013-01-25	2012-12-10	2013-01-25	48	11	6	18.03	53.33
Data-related parameters	1134370-2013	1873	-80.85133	25.46200	2013-02-05	2013-02-24	2013-02-17	2013-02-24	42	7	5	35.00	87.50
	1134370-2013	644	-80.41600	25.37267	2012-11-12	2012-11-20	2012-11-12	2012-11-20	33	9	9	100.00	66.67
Buffer (m)	burst	loc_id	long	lat	first_date	last_date	attempt_start	attempt_end	tot_vis	days_vis	consec_days	perc_days_vis	perc_top_vis
40													

Showing 1 to 10 of 38 entries

Discriminate between nests and non-nests

Classification And Regression Trees (CART)

Find nests among revisited locations

t	1	2	3	4	•••	T-3	T-2	T-1	Т
Y	8	6	6	0	•••	2	0	1	0
Ν	12	12	10	0	•••	5	10	8	12

t	1	2	3	4	•••	T-3	T-2	T-1	Т
Y	8	6	6	0		2	0	1	0
Ν	12	12	10	0	•••	5	10	8	12

t	1	2	3	4	•••	T-3	T-2	T-1	Т
Y	8	6	6	0	•••	2	0	1	0
Ν	12	12	10	0	•••	5	10	8	12

t	1	2	3	4	•••	T-3	T-2	T-1	Т
Y	8	6	6	0	•••	2	0	1	0
Ν	12	12	10	0	•••	5	10	8	12

 $z_t = 1 \rightarrow \text{Alive}$ $z_t = 0 \rightarrow \text{Dead}$

 $z_t = 1 \rightarrow \text{Alive}$ $z_t = 0 \rightarrow \text{Dead}$

 $\phi_{\rm t}$ ightarrow Probability of survival

 $p_{\rm t} \rightarrow$ Probability of detection

 $z_t = 1 \rightarrow \text{Alive}$ $z_t = 0 \rightarrow \text{Dead}$

 $\phi_{\rm t}$ ightarrow Probability of survival

 $p_{\rm t} \rightarrow$ Probability of detection

 $z_t \sim Bern(z_{t-1} \times \phi_{t-1})$

 $z_t = 1 \rightarrow \text{Alive}$ $z_t = 0 \rightarrow \text{Dead}$

- $\phi_t \rightarrow$ Probability of survival
- $p_t \rightarrow$ Probability of detection

 $z_t \sim Bern(z_{t-1} \times \phi_{t-1})$ $Y_t \sim Binom(z_t \times p_t, N_t)$ Takes into account:

 Y_T

 Z_T

 p_T

Missing data

 $\phi_{\mathrm{T-1}}$

Missed visit detection

 $z_t = 1 \rightarrow \text{Alive}$ $z_t = 0 \rightarrow \text{Dead}$

 $\phi_{\rm t}$ ightarrow Probability of survival

 $p_{\rm t} \rightarrow$ Probability of detection

 $z_{t} \sim Bern(z_{t-1} \times \phi_{t-1})$ $Y_{t} \sim Binom(z_{t} \times p_{t}, N_{t})$ $logit(\phi_{t}) = \beta_{\phi_{0}} + \beta_{\phi_{1}} \times t$ $logit(p_{t}) = \beta_{p_{0}} + \beta_{p_{1}} \times t$

Takes into account:

 Y_T

 Z_T

 p_T

- Missing data
- Missed visit detection
- Time-varying survival and detection

Application to Data

		Mediterranean gulls	Lesser kestrels	Wood storks	
Temporal resolution (min)		15	15	60	
Ground-truth		Loc. + Outcome	Loc. + Outcome	Location only	
Number	Breeding	24	50	107	
of tracks	Non-breeding	16	16	41	
Та	agged at	Incubation	Early chick- rearing	Non-breeding	

Number of revisited locations (40 m buffer)

1379	511	9871

Number of nests found

	Mediterranean gulls	Lesser kestrels	Wood storks
Positive Predictive Value	73%	100%	86%
Sensitivity	92%	90%	88%

 $PPV = \Pr(known|detected)$

 $S = \Pr(detected|known)$

	Mediterranean gulls	Lesser kestrels	Wood storks
False Negative Rate	8%	10%	12%
False Positive Rate	0%	44%	7%

FNR = Pr(not detected|known)
FPR = Pr(detected|non breeder)

Probability of visit detection

Nest survival estimates

• Our method connects movement to reproductive success

- Our method connects movement to reproductive success
- Good performance despite data limitations

- Our method connects movement to reproductive success
- Good performance despite data limitations
- Applicable to any GPS-trackable birds

• Knowledge of biology of the species is critical

- Knowledge of biology of the species is critical
- Need to tailor the analysis according to data characteristics

Future improvements

• Incorporate uncertainty in nest detection

Future improvements

- Incorporate uncertainty in nest detection
- Explicitly consider path geometry

Future improvements

- Incorporate uncertainty in nest detection
- Explicitly consider path geometry
- Identify nesting stages based on periodicity of visits

Thank you!

package 'nestR'

https://github.com/picardis/nestR

